Question : In the given network, find the values of currents I1, I2 and I3.
Doubt by Anushka
Solution :
Applying Kirchhoff's Junction Rule at D
I1=I2+I3 — (1)
Applying Kirchhoff's Loop Rule in closed loop 1
1I1+2I2+2I1=2-1
3I1+2I2=1
3(I2+I3)+2I2=1 [Using eq (1)]
3I2+3I3+2I2=1
5I2+3I3=1 — (2)
1I1+2I2+2I1=2-1
3I1+2I2=1
3(I2+I3)+2I2=1 [Using eq (1)]
3I2+3I3+2I2=1
5I2+3I3=1 — (2)
Again, applying Kirchhoff's Loop Rule in closed loop 2
3I3+10I3-2I2=3-1
13I3-2I2=2
-2I2+13I3=2 — (2)
13I3-2I2=2
-2I2+13I3=2 — (2)
Solving equations (1) and (2) by elimination method
[ 5I2+3I3=1 ]×2
[-2I2+13I3=2 ]×5
10I2+6I3=2 — (2)
-10I2+65I3=10 — (3)
------------------
0 + 71I3 = 12
------------------
I3=12/71 A
10I2+6I3=2 — (2)
-10I2+65I3=10 — (3)
------------------
0 + 71I3 = 12
------------------
I3=12/71 A
Putting this value of I3 in equation (2)
10I2+6(12/71)=2
10I2+(72/71)=2
10I2=2-(72/71)
10I2=(142-72)/71
10I2=70/71
I2=7/71 A
10I2+6(12/71)=2
10I2+(72/71)=2
10I2=2-(72/71)
10I2=(142-72)/71
10I2=70/71
I2=7/71 A
Putting these values of I2 and I3 in equation (1)
I1= (7/71)+(12/71)
I1=19/71 A
I1=19/71 A
Hence, I1 = 19/71, I2 = 7/71, I3=12/71