Question : Determine the current in each branch of the network shown in Figure.

Doubt by Gurdev
Solution :

Applying Kirchhoffs's Loop Rule in closed Loop 1
1I1+4I2+2(I2+I3)=10
I1+4I2+2I2+2I3=10
I1+6I2+2I3=10 — (1)
Applying Kirchhoffs's Loop Rule in closed Loop 2
1I1+4(I1-I2)-2(I2+I3-I1)=10
I1+4I1-4I2-2I2-2I3+2I1=10
7I1-6I2-2I3=10 — (2)
Applying Kirchhoffs's Loop Rule in closed Loop 3
2(I2+I3)+2(I2+I3-I1)=5
2I2+2I3+2I2+2I3-2I1=5
-2I1+4I2+4I3=5 — (3)
Adding equations (1) and (2) to eliminate I2 and I3
(I1 + 6I2 + 2I3) + (7I1 - 6I2 - 2I3) = 10 + 10
I1 + 6I2 + 2I3+ 7I1 - 6I2 - 2I3 = 20
8I1 = 20
I1 = 20/8
I1=5/2 A
I1=2.5 A
I1 = 20/8
I1=5/2 A
I1=2.5 A
Substituting I1=2.5 A in equation (1)
2.5+6I2+2I3=10
6I2+2I3=10-2.5
6I2+2I3=7.5 — (A)
Substituting I1=2.5 A in equation (3)
6I2+2I3=10-2.5
6I2+2I3=7.5 — (A)
Substituting I1=2.5 A in equation (3)
-2(2.5)+4I2+4I3=5
-5+4I2+4I3=5
4I2+4I3=5+5
4I2+4I3=10 — (B)
Now Solving Equation (A) and (B)
[6I2+2I3=7.5 ]×2
4I2+4I3=10
12I2+4I3=15
4I2+4I3=10
- - -
-----------------
8I2+0=5
8I2=5
I2=5/8 A
I2=0.625 A
- - -
-----------------
8I2+0=5
8I2=5
I2=5/8 A
I2=0.625 A
Putting I2=5/8 in equation (A)
6(5/8)+2I3=7.5
15/4+2I3=7.5
2I3=7.5-(15/4)
2I3=(15/2)-(15/4)
2I3=(30/4)-(15/4)
2I3=15/4
I3=15/8 A
OR
15/4+2I3=7.5
2I3=7.5-(15/4)
2I3=(15/2)-(15/4)
2I3=(30/4)-(15/4)
2I3=15/4
I3=15/8 A
OR
I3=1.875 A
The currents in the various branches of the network are
AB = I2 = 5/8 A = 0.625 A
AC = I1 = 2.5 A or 5/2 A
AD = I1-I2 = 2.5 - 0.625 = 1.875 A or 15/8 A
BC = I2+I3 = 5/8 + 15/8 = 20/8 = 5/2 = 2.5 A
AB = I2 = 5/8 A = 0.625 A
AC = I1 = 2.5 A or 5/2 A
AD = I1-I2 = 2.5 - 0.625 = 1.875 A or 15/8 A
BC = I2+I3 = 5/8 + 15/8 = 20/8 = 5/2 = 2.5 A
CD = I2+I3-I1
= 5/8 + 15/8 - 5/2
= 5/8 + 15/8 - 5/2
= 5/8 + 15/8 - 20/8
= 20/8 - 20/8
= 0
DEB = I3 = 15/8 = 1.875 A
= 20/8 - 20/8
= 0
DEB = I3 = 15/8 = 1.875 A