Question : The four arms of a Wheatstone bridge have the following resistances:
AB=100Ω, BC=10Ω, CD=5Ω, and DA=60Ω.

A galvanometer of 15Ω resistance is connected across BD. Calculate the current through the galvanometer when a potential difference of 10 V is maintained across AC.
Doubt by Gurdev
Solution :

100I1+15Ig-60I2=0
5[20I1+3Ig-12I2]=0
20I1+3Ig-12I2=0/5
20I1+3Ig-12I2=0— (1)
5[20I1+3Ig-12I2]=0
20I1+3Ig-12I2=0/5
20I1+3Ig-12I2=0— (1)
Applying Kirchhoff's Loop Rule in closed Loop 2
15Ig+5(I2+Ig)-10(I1-Ig)=0
15Ig+5I2+5Ig-10I1+10Ig=0
-10I1+5I2+30Ig=0
5[-2I1+I2+6Ig]=0
-2I1+I2+6Ig=0/5
-2I1+I2+6Ig=0— (2)
15Ig+5I2+5Ig-10I1+10Ig=0
-10I1+5I2+30Ig=0
5[-2I1+I2+6Ig]=0
-2I1+I2+6Ig=0/5
-2I1+I2+6Ig=0— (2)
Applying Kirchhoff's Loop Rule in closed Loop 3
60I2+5(I2+Ig)=10
60I2+5I2+5Ig=10
65I2+5Ig=10
5[13I2+Ig]=10
13I2+Ig=10/5
13I2+Ig=2 — (3)
Using Equation (1) and (2)
20I1+3Ig-12I2=0
[-2I1+I2+6Ig=0]×10
20I1+3Ig-12I2=0
-20I1+60Ig+10I2=0
--------------------------
0+63Ig-2I2=0
0+63Ig-2I2=0
--------------------------
63Ig-2I2=0
63Ig=2I2
2I2=63Ig
I2=63Ig/2
63Ig-2I2=0
63Ig=2I2
2I2=63Ig
I2=63Ig/2
Putting this value of I2 in equation (3)
13I2+Ig=2
13[63Ig/2]+Ig=2
819Ig/2+Ig=2
409.5Ig+Ig=2
410.5Ig=2
Ig=2/410.5
Ig=20/4105
Ig=0.00487
Ig=4.87×10-3
Ig=4.87 mA
13[63Ig/2]+Ig=2
819Ig/2+Ig=2
409.5Ig+Ig=2
410.5Ig=2
Ig=2/410.5
Ig=20/4105
Ig=0.00487
Ig=4.87×10-3
Ig=4.87 mA
Hence, the current through the galvanometer is 4.87 mA.